Progress on CAFFEINE

Yann-Gaél Guéhéneuc

File started May 13, 2002

Copy of October 14, 2003
Priorities: 7, 8

Fixed bugs and implemented features The following list points out the
bugs and missing features in CAFFEINE, and the corrections made. (The list is
given in reverse-chronological order).

1.

Rename the packages to replace fr.emn with caffeine for consistency.

2003,/08/20 » Done!

. Convert the tests into JUNIT real test-cases!

2003/08/15 » I heavily refactored CAFFEINE to make it a Singleton
and to add an Observer. Then, building the tests what just a matter of
rewriting the existing test-cases into JUNIT test-cases.

Improve performances with respect to the remote loading mechanism
(which uses JAVASSIST [1]).

2003/07/30 » The load-time byte-codes modification are now performed
only if required. In particular, the extra finalize () methods are added
only if needed, the System.exit() method-calls are intercepted only if
needed... This dramatically improves performances!

. The OutputMonitor generates a superfluous carriage return.

2003/07/30 » The problem was that the flow contains carriage returns.
These carriage returns are now skipped for a cleaner output.

Implement a trace-generation simulator. The simulator shall improve the
performances when testing Prolog code...

2002/06/03 » The caffeine.monitor.simulator package contains the
needed classes to perform a simulation of a Java program execution. The
simulation requires a trace file and a rule file. The trace file must contains
event as data string (see caffeine.monitor.logic.Event.toData()).
There are no simple way (right now) to generate such a trace file, the gen-
eration code must be added and removed by hand from the EventManager
source code.

10.

11.

12.

13.

2002/06/23 » The Caffeine class proposes a new run method that takes
as parameter a file name and a boolean, for the finalizations.

Evaluate the performance when setting dynamically JDI filters.

2002/06/03 » It is now possible to set up dynamically the filter when
requesting for the next event. (See nextEvent/* predicate definitions
in the Caffeine/Monitor/Logic/Rules.pl file.) This improves dramat-
ically the performances of the event generation mechanism (up to a 3-
factor!).

Clean up the CaffeineMethodReturnedValueWrapper and Loader classes
to remove the code about caffeineUniqueExit, because I perform the
detection of a program exit by monitoring the relevant threads.

2002/06/23 » This is actually no true... See the ASE’02 article for
details on program end in Java.

Remove the negative filter list parameter because it is not needed any-
more!

2002,/06,/03 » Done.

Rename packages to make them consistent.

2002/06/03 » Done.

Remove class CaffeineMethodReturnedValueWrapper and add its meth-
ods directly to the main class being analyzed. This shall improve the
performances.

2002/05/22 » I need to keep this class because of a bug (one more...) in
the JDI. I improve the performances by renaming the package to include
the class into a monitored package.

2002/06/03 » 1 kept the class and I don’t rename it anymore. I now
create a dedicated method exit request when required.

The Caffeine.query(Class, String) method did not consult properly
the query file.

2002/05/24 » The method now uses a StringBuffer for the query file.

I need to have an event for the program end.

2002/05/24 » The programEnd event indicates that the program just
terminated; The JVM may still run for a while to process the finalizers.
I catch this event by monitoring the system threads Signal Dispatcher
and AWT-Windows.

The events defined in JIPROLOG [2] include useless parameters. Need to
define within Prolog predicates with just the right number of parameters
each.

14.

2002/05/20 » The Rules.pl Prolog file now convert the events <name
of the event>0 into <name of the event> with the only appropriate
parameters.

The EventManger builds an erroneous constructor event when encounter-
ing a static initializer.

2002/05/15 » The problem was the test to distinguish between method
event, constructor event, and finalizers: I tested only the first char of the
method name, i.e., '<’. A static initializer as for name ’'<clinit>’, thus I
generated a constructor event for it. I now test the complete names for
constructor and static initializers.

Bugs and missing features The following list points out the bugs and miss-
ing features in CAFFEINE.

1.

Verify that CAFFEINE resists to un-handled exceptions. (Especially with
regards to the trick to get the finalizers in the right order, on exit.)

The method entry and exit events must include the types of formal param-
eter and possibly the parameter values, to distinguish among polymorphic
methods.

Add an interface to keep all constants in one unique (and clean) place!
Implement in the EventManger a filter mechanism at the method level?

Manage deferred composition relationships, i.e., composition relationships
that exist through a container class, such as Vector.

The EventManger does not handle static field correctly (the
accessWatchpointEvent.object () method returns null).

Improve performances by replacing java.util.Vector by
fr.emn.caffeine.remote.Vector only for fieldAccess-related classes.

Improve predicate updateEXProperties/7 in the Composition.pl file.

References

[1] Shigeru Chiba. Javassist — A reflection-based programming wizard for Java.
In Jean-Charles Fabre and Shigeru Chiba, editors, proceedings of the OOP-
SLA workshop on Reflective Programming in C++ and Java. Center for
Computational Physics, University of Tsukuba, October 1998. UTCCP Re-
port 98-4.

[2] Ugo Chirico. JIProlog, April 2002.

